Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313848, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583064

RESUMO

The increasing prevalence of dry eye syndrome in aging and digital societies compromises long-term contact lens (CL) wear and forces users to regular eye drop instillation to alleviate discomfort. Here a novel approach with the potential to improve and extend the lubrication properties of CLs is presented. This is achieved by embedding lubricant-secreting biofactories within the CL material. The self-replenishable reservoirs autonomously produce and release hyaluronic acid (HA), a natural lubrication and wetting agent, long term. The hydrogel matrix regulates the growth of the biofactories and the HA production, and allows the diffusion of nutrients and HA for at least 3 weeks. The continuous release of HA sustainably reduces the friction coefficient of the CL surface. A self-lubricating CL prototype is presented, where the functional biofactories are contained in a functional ring at the lens periphery, outside of the vision area. The device is cytocompatible and fulfils physicochemical requirements of commercial CLs. The fabrication process is compatible with current manufacturing processes of CLs for vision correction. It is envisioned that the durable-by-design approach in living CL could enable long-term wear comfort for CL users and minimize the need for lubricating eye drops.

2.
Eur J Immunol ; 54(3): e2350693, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279603

RESUMO

Natural killer (NK) cells play a vital role in eliminating tumorigenic cells. Efficient locating and killing of target cells in complex three-dimensional (3D) environments are critical for their functions under physiological conditions. However, the role of mechanosensing in regulating NK-cell killing efficiency in physiologically relevant scenarios is poorly understood. Here, we report that the responsiveness of NK cells is regulated by tumor cell stiffness. NK-cell killing efficiency in 3D is impaired against softened tumor cells, whereas it is enhanced against stiffened tumor cells. Notably, the durations required for NK-cell killing and detachment are significantly shortened for stiffened tumor cells. Furthermore, we have identified PIEZO1 as the predominantly expressed mechanosensitive ion channel among the examined candidates in NK cells. Perturbation of PIEZO1 abolishes stiffness-dependent NK-cell responsiveness, significantly impairs the killing efficiency of NK cells in 3D, and substantially reduces NK-cell infiltration into 3D collagen matrices. Conversely, PIEZO1 activation enhances NK killing efficiency as well as infiltration. In conclusion, our findings demonstrate that PIEZO1-mediated mechanosensing is crucial for NK killing functions, highlighting the role of mechanosensing in NK-cell killing efficiency under 3D physiological conditions and the influence of environmental physical cues on NK-cell functions.


Assuntos
Células Matadoras Naturais , Células Matadoras Naturais/fisiologia , Morte Celular
3.
Soft Matter ; 20(6): 1320-1332, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38241053

RESUMO

Pluronic (Plu) hydrogels mixed with variable fractions of Pluronic diacrylate (PluDA) have become popular matrices to encapsulate bacteria and control their growth in engineered living materials. Here we study the rheological response of 30 wt% Plu/PluDA hydrogels with PluDA fraction between 0 and 1. We quantify the range of viscoelastic properties that can be covered in this system by varying in the PluDA fraction. We present stress relaxation and creep-recovery experiments and describe the variation of the critical yield strain/stress, relaxation and recovery parameters of Plu/PluDA hydrogels as function of the covalent crosslinking degree using the Burgers and Weilbull models. The analyzed hydrogels present two stress relaxations with different timescales which can be tuned with the covalent crosslinking degree. We expect this study to help users of Plu/PluDA hydrogels to estimate the mechanical properties of their systems, and to correlate them with the behaviour of bacteria in future Plu/PluDA devices of similar composition.


Assuntos
Hidrogéis , Poloxâmero
4.
Adv Sci (Weinh) ; 11(10): e2303816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145336

RESUMO

The hierarchical design of the toe pad surface in geckos and its reversible adhesiveness have inspired material scientists for many years. Micro- and nano-patterned surfaces with impressive adhesive performance have been developed to mimic gecko's properties. While the adhesive performance achieved in some examples has surpassed living counterparts, the durability of the fabricated surfaces is limited and the capability to self-renew and restore function-inherent to biological systems-is unimaginable. Here the morphogenesis of gecko setae using skin samples from the Bibron´s gecko (Chondrodactylus bibronii) is studied. Gecko setae develop as specialized apical differentiation structures at a distinct cell-cell layer interface within the skin epidermis. A primary role for F-actin and microtubules as templating structural elements is necessary for the development of setae's hierarchical morphology, and a stabilization role of keratins and corneus beta proteins is identified. Setae grow from single cells in a bottom layer protruding into four neighboring cells in the upper layer. The resulting multicellular junction can play a role during shedding by facilitating fracture of the cell-cell interface and release of the high aspect ratio setae. The results contribute to the understanding of setae regeneration and may inspire future concepts to bioengineer self-renewable patterned adhesive surfaces.


Assuntos
Actinas , Lagartos , Animais , Sensilas , Adesividade , Lagartos/anatomia & histologia , Adesivos
5.
Front Bioeng Biotechnol ; 11: 1278062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090710

RESUMO

Microbial biofactories allow the upscaled production of high-value compounds in biotechnological processes. This is particularly advantageous for compounds like flavonoids that promote better health through their antioxidant, anti-bacterial, anti-cancer and other beneficial effects but are produced in small quantities in their natural plant-based hosts. Bacteria like E. coli have been genetically modified with enzyme cascades to produce flavonoids like naringenin and pinocembrin from coumaric or cinnamic acid. Despite advancements in yield optimization, the production of these compounds still involves high costs associated with their biosynthesis, purification, storage and transport. An alternative production strategy could involve the direct delivery of the microbial biofactories to the body. In such a strategy, ensuring biocontainment of the engineered microbes in the body and controlling production rates are major challenges. In this study, these two aspects are addressed by developing engineered living materials (ELMs) consisting of probiotic microbial biofactories encapsulated in biocompatible hydrogels. Engineered probiotic E. coli Nissle 1917 able to efficiently convert cinnamic acid into pinocembrin were encapsulated in poly(vinyl alcohol)-based hydrogels. The biofactories are contained in the hydrogels for a month and remain metabolically active during this time. Control over production levels is achieved by the containment inside the material, which regulates bacteria growth, and by the amount of cinnamic acid in the medium.

6.
ACS Omega ; 8(35): 32043-32052, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692225

RESUMO

Methylsulfone derivatized poly(ethylene) glycol (PEG) macromers can be biofunctionalized with thiolated ligands and cross-linked with thiol-based cross-linkers to obtain bioactive PEG hydrogels for in situ cell encapsulation. Methylsulfonyl-thiol (MS-SH) reactions present several advantages for this purpose when compared to other thiol-based cross-linking systems. They proceed with adequate and tunable kinetics for encapsulation, they reach a high conversion degree with good selectivity, and they generate stable reaction products. Our previous work demonstrated the cytocompatibility of cross-linked PEG-MS/thiol hydrogels in contact with fibroblasts. However, the cytocompatibility of the in situ MS-SH cross-linking reaction itself, which generates methylsulfinic acid as byproduct at the cross-linked site, remains to be evaluated. These studies are necessary to evaluate the potential of these systems for in vivo applications. Here we perform an extensive cytocompatibility study of PEG hydrogels during in situ cross-linking by the methylsulfonyl-thiol reaction. We compare these results with maleimide-thiol cross-linked PEGs which are well established for cell culture and in vivo experiments and do not involve the release of a byproduct. We show that fibroblasts and endothelial cells remain viable after in situ polymerization of methylsulfonyl-thiol gels on the top of the cell layers. Cell viability seems better than after in situ cross-linking hydrogels with maleimide-thiol chemistry. The endothelial cell proinflammatory phenotype is low and similar to the one obtained by the maleimide-thiol reaction. Finally, no activation of monocytes is observed. All in all, these results demonstrate that the methylsulfonyl-thiol chemistry is cytocompatible and does not trigger high pro-inflammatory responses in endothelial cells and monocytes. These results make methylsulfonyl-thiol chemistries eligible for in vivo testing and eventually clinical application in the future.

7.
Adv Sci (Weinh) ; 10(23): e2304457, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37582689

RESUMO

Adv. Sci. 2019, 6, 1801982 DOI: 10.1002/advs.201801982 The above article, published online on May 3, 2019, in Wiley Online Library (https://doi.org/10.1002/advs.201801982), has been retracted by agreement between the authors, the journal Editor-in-Chief Kirsten Severing, and Wiley-VCH GmbH. The retraction has been agreed on following concerns raised by a third party and a subsequent investigation by the corresponding authors. Data depicted in Figure 4 and Figure 5 could not be reproduced in follow-up experiments. Therefore, the conclusions associated with those figures in the article are considered invalid. E.S.K. participated in the study design, performed measurements, analyzed the data, compiled the figures and participated in manuscript writing. A.d.C. and S.S. participated in the study design, research supervision, and manuscript writing. J.I.P. participated in the study design. M.K.L.H. participated in research supervision and manuscript revision. C.M. assisted with the experimental procedures and data collection.

8.
Biomater Adv ; 153: 213554, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37480604

RESUMO

In living therapeutic materials (LTMs), organisms genetically programmed to produce and deliver drugs are encapsulated in porous matrices acting as physical barriers between the therapeutic organisms and the host cells. LTMs consisting of engineered E. coli encapsulated in Pluronic F127-based hydrogels have been frequently used in LTM designs but their immunogenicity has not been tested. In this study, we investigate the response of human peripheral blood mononuclear cells (PBMCs) exposed to this bacteria/hydrogel combination. The release of inflammation-related cytokines and cytotoxic proteins and the subsets of natural killer cells and T cells were examined. Encapsulation of the bacteria in hydrogels considerably lowers their immunogenicity. ClearColi, an endotoxin-free variant of E. coli, did not polarize NK cells into the more cytolytic CD16dim subset as E. coli. Our results demonstrate that ClearColi-encapsulated hydrogels generate low immunogenic response and are suitable candidates for the development of LTMs for in vivo testing to assess a potential clinical use. Nevertheless, we observed a stronger immune response (elevated levels of IFNγ, IL-6 and cytotoxic proteins) in pro-inflammatory PBMCs characterized by a high spontaneous release of IL-2. This highlights the need to identify recipients who have a higher likelihood of experiencing undesired immune responses to LTMs with IL-2 serving as a potential predictive marker. Additionally, including anti-inflammatory measures in living therapeutic material designs could be beneficial for such recipients.


Assuntos
Escherichia coli , Interleucina-2 , Humanos , Leucócitos Mononucleares , Bactérias , Hidrogéis
9.
Biomater Adv ; 145: 213240, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577192

RESUMO

In engineered living materials (ELMs) non-living matrices encapsulate microorganisms to acquire capabilities like sensing or biosynthesis. The confinement of the organisms to the matrix and the prevention of overgrowth and escape during the lifetime of the material is necessary for the application of ELMs into real devices. In this study, a bilayer thin film hydrogel of Pluronic F127 and Pluronic F127 acrylate polymers supported on a solid substrate is introduced. The inner hydrogel layer contains genetically engineered bacteria and supports their growth, while the outer layer acts as an envelope and does not allow leakage of the living organisms outside of the film for at least 15 days. Due to the flat and transparent nature of the construct, the thin layer is suited for microscopy and spectroscopy-based analyses. The composition and properties of the inner and outer layer are adjusted independently to fulfil viability and confinement requirements. We demonstrate that bacterial growth and light-induced protein production are possible in the inner layer and their extent is influenced by the crosslinking degree of the used hydrogel. Bacteria inside the hydrogel are viable long term, they can act as lactate-sensors and remain active after storage in phosphate buffer at room temperature for at least 3 weeks. The versatility of bilayer bacteria thin-films is attractive for fundamental studies and for the development of application-oriented ELMs.


Assuntos
Hidrogéis , Poloxâmero , Hidrogéis/farmacologia , Poloxâmero/química , Polímeros , Bactérias
10.
Macromol Biosci ; 23(2): e2200419, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36457236

RESUMO

Hydrogel precursors that crosslink within minutes are essential for the development of cell encapsulation matrices and their implementation in automated systems. Such timescales allow sufficient mixing of cells and hydrogel precursors under low shear forces and the achievement of homogeneous networks and cell distributions in the 3D cell culture. The previous work showed that the thiol-tetrazole methylsulfone (TzMS) reaction crosslinks star-poly(ethylene glycol) (PEG) hydrogels within minutes at around physiological pH and can be accelerated or slowed down with small pH changes. The resulting hydrogels are cytocompatible and stable in cell culture conditions. Here, the gelation kinetics and mechanical properties of PEG-based hydrogels formed by thiol-TzMS crosslinking as a function of buffer, crosslinker structure and degree of TzMS functionality are reported. Crosslinkers of different architecture, length and chemical nature (PEG versus peptide) are tested, and degree of TzMS functionality is modified by inclusion of RGD cell-adhesive ligand, all at concentration ranges typically used in cell culture. These studies corroborate that thiol/PEG-4TzMS hydrogels show gelation times and stiffnesses that are suitable for 3D cell encapsulation and tunable through changes in hydrogel composition. The results of this study guide formulation of encapsulating hydrogels for manual and automated 3D cell culture.


Assuntos
Encapsulamento de Células , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Hidrogéis/química , Cinética , Técnicas de Cultura de Células/métodos , Materiais Biocompatíveis/química , Polietilenoglicóis/química
11.
ACS Biomater Sci Eng ; 8(9): 3899-3911, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35984428

RESUMO

The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure-function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly(caprolactone) constructs with a height of 125-500 µm and fiber diameters of 10-12 µm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6-360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8-14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Humanos , Porosidade , Engenharia Tecidual/métodos , Tecidos Suporte/química , Malha Trabecular/fisiologia
12.
Adv Sci (Weinh) ; 9(17): e2106026, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35404519

RESUMO

Engineered living materials (ELMs) are a new class of materials in which living organism incorporated into diffusive matrices uptake a fundamental role in material's composition and function. Understanding how the spatial confinement in 3D can regulate the behavior of the embedded cells is crucial to design and predict ELM's function, minimize their environmental impact and facilitate their translation into applied materials. This study investigates the growth and metabolic activity of bacteria within an associative hydrogel network (Pluronic-based) with mechanical properties that can be tuned by introducing a variable degree of acrylate crosslinks. Individual bacteria distributed in the hydrogel matrix at low density form functional colonies whose size is controlled by the extent of permanent crosslinks. With increasing stiffness and elastic response to deformation of the matrix, a decrease in colony volumes and an increase in their sphericity are observed. Protein production follows a different pattern with higher production yields occurring in networks with intermediate permanent crosslinking degrees. These results demonstrate that matrix design can be used to control and regulate the composition and function of ELMs containing microorganisms. Interestingly, design parameters for matrices to regulate bacteria behavior show similarities to those elucidated for 3D culture of mammalian cells.


Assuntos
Bactérias , Hidrogéis , Animais , Mamíferos
13.
Adv Ther (Weinh) ; 5(3): 2100222, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35310821

RESUMO

Despite the progress in surgical techniques and antibiotic prophylaxis, opportunistic wound infections with Bacillus cereus remain a public health problem. Secreted toxins are one of the main factors contributing to B. cereus pathogenicity. A promising strategy to treat such infections is to target these toxins and not the bacteria. Although the exoenzymes produced by B. cereus are thoroughly investigated, little is known about the role of B. cereus collagenases in wound infections. In this report, the collagenolytic activity of secreted collagenases (Col) is characterized in the B. cereus culture supernatant (csn) and its isolated recombinantly produced ColQ1 is characterized. The data reveals that ColQ1 causes damage on dermal collagen (COL). This results in gaps in the tissue, which might facilitate the spread of bacteria. The importance of B. cereus collagenases is also demonstrated in disease promotion using two inhibitors. Compound 2 shows high efficacy in peptidolytic, gelatinolytic, and COL degradation assays. It also preserves the fibrillar COLs in skin tissue challenged with ColQ1, as well as the viability of skin cells treated with B. cereus csn. A Galleria mellonella model highlights the significance of collagenase inhibition in vivo.

14.
Mater Sci Eng C Mater Biol Appl ; 131: 112515, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857294

RESUMO

Efficient wound treatments to target specific events in the healing process of chronic wounds constitute a significant aim in regenerative medicine. In this sense, nanomedicine can offer new opportunities to improve the effectiveness of existing wound therapies. The aim of this study was to develop catechol bearing polymeric nanoparticles (NPs) and to evaluate their potential in the field of wound healing. Thus, NPs wound healing promoting activities, potential for drug encapsulation and controlled release, and further incorporation in a hydrogel bioink formulation to fabricate cell-laden 3D scaffolds are studied. NPs with 2 and 29 M % catechol contents (named NP2 and NP29) were obtained by nanoprecipitation and presented hydrodynamic diameters of 100 and 75 nm respectively. These nanocarriers encapsulated the hydrophobic compound coumarin-6 with 70% encapsulation efficiency values. In cell culture studies, the NPs had a protective effect in RAW 264.7 macrophages against oxidative stress damage induced by radical oxygen species (ROS). They also presented a regulatory effect on the inflammatory response of stimulated macrophages and promoted upregulation of the vascular endothelial growth factor (VEGF) in fibroblasts and endothelial cells. In particular, NP29 were used in a hydrogel bioink formulation using carboxymethyl chitosan and hyaluronic acid as polymeric matrices. Using a reactive mixing bioprinting approach, NP-loaded hydrogel scaffolds with good structural integrity, shape fidelity and homogeneous NPs dispersion, were obtained. The in vitro catechol NPs release profile of the printed scaffolds revealed a sustained delivery. The bioprinted scaffolds supported viability and proliferation of encapsulated L929 fibroblasts over 14 days. We envision that the catechol functionalized NPs and resulting bioactive bioink presented in this work offer promising advantages for wound healing applications, as they: 1) support controlled release of bioactive catechol NPs to the wound site; 2) can incorporate additional therapeutic functions by co-encapsulating drugs; 3) can be printed into 3D scaffolds with tailored geometries based on patient requirements.


Assuntos
Bioimpressão , Nanopartículas , Catecóis , Células Endoteliais , Humanos , Impressão Tridimensional , Fator A de Crescimento do Endotélio Vascular
15.
Front Immunol ; 12: 729820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484240

RESUMO

Efficacy of cytotoxic T lymphocyte (CTL)-based immunotherapy is still unsatisfactory against solid tumors, which are frequently characterized by condensed extracellular matrix. Here, using a unique 3D killing assay, we identify that the killing efficiency of primary human CTLs is substantially impaired in dense collagen matrices. Although the expression of cytotoxic proteins in CTLs remained intact in dense collagen, CTL motility was largely compromised. Using light-sheet microscopy, we found that persistence and velocity of CTL migration was influenced by the stiffness and porosity of the 3D matrix. Notably, 3D CTL velocity was strongly correlated with their nuclear deformability, which was enhanced by disruption of the microtubule network especially in dense matrices. Concomitantly, CTL migration, search efficiency, and killing efficiency in dense collagen were significantly increased in microtubule-perturbed CTLs. In addition, the chemotherapeutically used microtubule inhibitor vinblastine drastically enhanced CTL killing efficiency in dense collagen. Together, our findings suggest targeting the microtubule network as a promising strategy to enhance efficacy of CTL-based immunotherapy against solid tumors, especially stiff solid tumors.


Assuntos
Movimento Celular/efeitos dos fármacos , Colágeno Tipo I/química , Citotoxicidade Imunológica , Imunoterapia Adotiva , Microtúbulos/efeitos dos fármacos , Neoplasias/terapia , Linfócitos T Citotóxicos/transplante , Moduladores de Tubulina/farmacologia , Vimblastina/farmacologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Elasticidade , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Hidrogéis , Microtúbulos/imunologia , Microtúbulos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Porosidade , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
16.
Biomacromolecules ; 22(7): 2874-2886, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34096259

RESUMO

Hydrogels are widely used as hydrated matrices for cell encapsulation in a number of applications, spanning from advanced 3D cultures and tissue models to cell-based therapeutics and tissue engineering. Hydrogel formation in the presence of living cells requires cross-linking reactions that proceed efficiently under close to physiological conditions. Recently, the nucleophilic aromatic substitution of phenyl-oxadiazole (Ox) methylsulfones (MS) by thiols was introduced as a new cross-linking reaction for cell encapsulation. Reported poly(ethylene glycol) (PEG)-based hydrogels featured tunable gelation times within seconds to a few minutes within pH 8.0 to 6.6 and allowed reasonably good mixing with cells. However, their rapid degradation prevented cell cultures to be maintained beyond 1 week. In this Article, we present the reactivity optimization of the heteroaromatic ring of the MS partner to slow down the cross-linking kinetics and the degradability of the derived hydrogels. New MS substrates based on phenyl-tetrazole (Tz) and benzothiazole (Bt) rings, with lower electrophilicity than Ox, were synthesized by simple pathways. When mixed with PEG-thiol, the novel PEG-MS extended the working time of precursor mixtures and allowed longer term cell culture. The Tz-based MS substrate was identified as the best candidate, as it is accessible by simple chemical reactions from cost-effective reactants, hydrogel precursors show good stability in aqueous solution and keep high chemoselectivity for thiols, and the derived Tz gels support cell cultures for >2 weeks. The Tz system also shows tunable gelation kinetics within seconds to hours and allows comfortable manipulation and cell encapsulation. Our findings expand the toolkit of thiol-mediated chemistry for the synthesis of hydrogels with improved properties for laboratory handling and future automatization.


Assuntos
Encapsulamento de Células , Hidrogéis , Técnicas de Cultura de Células , Polietilenoglicóis , Compostos de Sulfidrila
17.
Nat Commun ; 12(1): 3580, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117256

RESUMO

Progress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e. motor proteins pulling on cytoskeletal fibers), we present a unique molecular machine that can apply forces at cell-matrix and cell-cell junctions using light as an energy source. The key actuator is a light-driven rotatory molecular motor linked to polymer chains, which is intercalated between a membrane receptor and an engineered biointerface. The light-driven actuation of the molecular motor is converted in mechanical twisting of the entangled polymer chains, which will in turn effectively "pull" on engaged cell membrane receptors (e.g., integrins, T cell receptors) within the illuminated area. Applied forces have physiologically-relevant magnitude and occur at time scales within the relevant ranges for mechanotransduction at cell-friendly exposure conditions, as demonstrated in force-dependent focal adhesion maturation and T cell activation experiments. Our results reveal the potential of nanomotors for the manipulation of living cells at the molecular scale and demonstrate a functionality which at the moment cannot be achieved by other technologies for force application.


Assuntos
Fenômenos Mecânicos , Mecanotransdução Celular/fisiologia , Receptores de Superfície Celular/fisiologia , Cálcio , Linhagem Celular , Fibroblastos , Adesões Focais , Humanos , Integrinas , Ligantes , Proteínas Motores Moleculares
18.
Adv Healthc Mater ; 10(14): e2100488, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34110713

RESUMO

The application of growth factor based therapies in regenerative medicine is limited by the high cost, fast degradation kinetics, and the multiple functions of these molecules in the cell, which requires regulated delivery to minimize side effects. Here a photoactivatable peptidomimetic of the vascular endothelial growth factor (VEGF) that allows the light-controlled presentation of angiogenic signals to endothelial cells embedded in hydrogel matrices is presented. A photoresponsive analog of the 15-mer peptidomimetic Ac-KLTWQELYQLKYKGI-NH2 (abbreviated P QK) is prepared by introducing a 3-(4,5-dimethoxy-2-nitrophenyl)-2-butyl (DMNPB) photoremovable protecting group at the Trp4 residue. This modification inhibits the angiogenic potential of the peptide temporally. Light exposure of P QK modified hydrogels provide instructive cues to embedded endothelial cells and promote angiogenesis at the illuminated sites of the 3D culture, with the possibility of spatial control. P QK modified photoresponsive biomaterials offer an attractive approach for the dosed delivery and spatial control of pro-angiogenic factors to support regulated vascular growth by just using light as an external trigger.


Assuntos
Peptidomiméticos , Fator A de Crescimento do Endotélio Vascular , Indutores da Angiogênese , Células Endoteliais , Hidrogéis , Neovascularização Fisiológica , Peptídeos , Peptidomiméticos/farmacologia
19.
Front Cell Dev Biol ; 9: 639815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855019

RESUMO

Immune cells process a myriad of biochemical signals but their function and behavior are also determined by mechanical cues. Macrophages are no exception to this. Being present in all types of tissues, macrophages are exposed to environments of varying stiffness, which can be further altered under pathological conditions. While it is becoming increasingly clear that macrophages are mechanosensitive, it remains poorly understood how mechanical cues modulate their inflammatory response. Here we report that substrate stiffness influences the expression of pro-inflammatory genes and the formation of the NLRP3 inflammasome, leading to changes in the secreted protein levels of the cytokines IL-1ß and IL-6. Using polyacrylamide hydrogels of tunable elastic moduli between 0.2 and 33.1 kPa, we found that bone marrow-derived macrophages adopted a less spread and rounder morphology on compliant compared to stiff substrates. Upon LPS priming, the expression levels of the gene encoding for TNF-α were higher on more compliant hydrogels. When additionally stimulating macrophages with the ionophore nigericin, we observed an enhanced formation of the NLRP3 inflammasome, increased levels of cell death, and higher secreted protein levels of IL-1ß and IL-6 on compliant substrates. The upregulation of inflammasome formation on compliant substrates was not primarily attributed to the decreased cell spreading, since spatially confining cells on micropatterns led to a reduction of inflammasome-positive cells compared to well-spread cells. Finally, interfering with actomyosin contractility diminished the differences in inflammasome formation between compliant and stiff substrates. In summary, we show that substrate stiffness modulates the pro-inflammatory response of macrophages, that the NLRP3 inflammasome is one of the components affected by macrophage mechanosensing, and a role for actomyosin contractility in this mechanosensory response. Thus, our results contribute to a better understanding of how microenvironment stiffness affects macrophage behavior, which might be relevant in diseases where tissue stiffness is altered and might potentially provide a basis for new strategies to modulate inflammatory responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...